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Resonance frequencies of thick plane-parallel plates are easily detected by diffraction of light with an 
accuracy better than 1 p.p.m. The method, which has been earlier employed for the determination of 
thermoelastic properties, proved to be sufficiently sensitive also for the measurement of stress-induced shifts 
of resonance frequencies, and is therefore suited for the determination of third-order elastic constants. The 
technique is easier to handle and much less expensive than other methods in use today. The complete sets of 
third-order elastic constants for KAl(SOa)2.12H20 , NH4Al(SO4)2.12H20 , CsAI(SO4)2.12H20 and 
CH3NH3AI(SO4)2.12H20 have been measured. All constants possess negative values. These alums exhibit a 
behaviour similar to that of the structurally related caesium halides, with the exception of ammonium 
alum which shows anomalously small constants. 

Introduction Experimental 

The nonlinear elastic behaviour of solids, represented 
by higher-order elasticity tensors, is directly related to 
all anharmonic properties such as thermal expansion, 
thermoelasticity, and attenuation processes of phonon 
propagation. In order to establish general equations of 
state covering higher stress and temperature ranges a 
knowledge of the third-order elastic constants (TOEC) 
is required. 

A survey of the experimental procedures for measur- 
ing TOEC has been given by Wallace (1970). Highly 
sensitive pulse-echo and pulse-transmission interference 
methods have been developed by Forgacs (1960, 'sing- 
around') and McSkimin (196 I, 'pulse superposition'). 

In this paper we report results obtained with the 
much simpler and less expensive method of measuring 
resonance frequencies of thick plane-parallel plates. 
The same technique has been successfully used for the 
recent determination of thermoelastic constants of 
numerous crystals by one of us (Haussiihl, 1960, 1961, 
1963). The accuracy achieved during routine work 
proved to be sufficient for the evaluation of the 
complete set of TOEC of crystals. For testing the 
method we measured the aluminium alums of K, NH4, 
Cs and CH3NH 3 which all belong to symmetry group 
m3. Specimens of high optical quality were available 
from earlier investigations (Haussfihl, 1961). No 
crystals of this symmetry group have been investigated 
so far. 

Basic equations for the determination of nonlinear 
acoustic properties of crystals have been derived by 
Seeger & Buck (1960) and by Thurston & Brugger 
(1964). A thorough review article has been published 
by Wallace (1970). In our paper we use the notations 
introduced there. The observable magnitudes are the 
second-order elastic constants (SOEC) at zero stress, 
cim, the zero-stress density P0, and the stress derivatives 
of ultrasonic velocities v of plane elastic waves, with 
propagation unit vector k and displacement unit vector 
w. The following fundamental equation combines these 
observed quantities with the unknown TOEC cijktmn: 

2 T 8(PoW2)/c3apq = k , kq  + 2po W SoDqWiW j 
T + CUktmnSmnpqk.iklWiW k. 

All quantities are taken at zero stress. (The bars used 
by Wallace to denote zero-stress conditions are omitted 
here.) W is the so-called 'natural velocity' defined by 
W = (lo/ll)V , where l 0 and l 1 denote the length of the 
specimen in the direction of the propagation vector 
without and with applied stress respectively, a m are the 
components of the applied static stress tensor. The 
second and third-order elastic constants are defined in 
the sense of Brugger (1964) as 

C iYkl = po( O 2 U/ O ~lij ~ ~lu) 
and 

C ijklmn : po( ~ 3 U/c3 ~IU cO ~]k! cO titan). 
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Table 1. A r r a n g e m e n t s  o f  m e a s u r e m e n t  a n d  e q u a t i o n s  f o r  the  e v a l u a t i o n  o f  T O E C  f o r  s y m m e t r y  g r o u p  m 3  

In Table 1 each equation is read horizontally, e.g. for propagation mode No. 1: ct~ ~ + c~ 2 + Cl~ 3 = B~, where B~ is directly related to 
experimental data (Table 2). z is the direction of the light beam; a I = srJsr  2, a 2 = (srl + 3srz)/2(srj + srz), a 3 = Sra4/(Srlj + s T ) ,  a 4 : 

(srl + sr)/2sr2;sr: isothermal second-order elastic compliance. 

Wave Direction 
No. type* of stress k w z Cll 1 Cll 2 Cil 3 Cl23 ci44 c155 Cl66 c456 B i 

1 l hydrostatic [ 100] [ 100] [010l 1 1 1 0 0 0 0 0 B~ 
2 t hydrostatic [ 100] [010] [001] 0 0 0 0 1 1 1 0 B 2 
3 l hydrostatic [111 I/V/3 [ l 111/~3 [1 i0l 1 3 3 2 4 4 4 0 B 3 

4 t hydrostatic [111]/V/3 [1 i0]/V/2 [1121 1 0 0 -1 1 1 1 0 B, 
5 l hydrostatic [1101/~/2 [1101/V/2 [0011 1 2 2 1 2 2 2 0 B 5 
6 t hydrostatic [ 110]/k/2 [001 ] [ 110] 0 0 0 0 1 1 1 0 B 6 
7 t hydrostatic [ 1101/V/2 [ 1 [01/V/2 [0011 1 0 0 - 1 0 0 0 0 B 7 
8 l [1001 [1001 [100] [001] 1 l/a~ 1/a I 0 0 0 0 0 B 8 
9 t [100l [I00] [0011 [010] 0 0 0 0 1 a~ 1 0 B 9 

10 t [1001 [1001 [010] [001] 0 0 0 0 1 1 a~ 0 Bj0 
11 l [1001 [0101 [0101 [001l 1 1 al 0 0 0 0 0 Bj~ 
12 l [100] [001] [001] [010] 1 a I 1 0 0 0 0 0 B~2 
13 t [100] [001] [I00] [010] 0 0 0 0 1 a~ 1 0 B~ 
14 t [1001 [010] [100] [001] 0 0 0 0 1 1 a~ 0 B~4 
15 t [001] [110I/v/2 [001l [110] 0 0 0 0 1 a 4 a 4 0 B, 5 
16 l [110]/~2 [001] [001] [ll01 1 a 4 a 4 0 0 0 0 0 B,6 
17 t [110]/V'2 [001l [110J/v/2 [ll0l 0 0 0 0 1 a 2 a 2 a 3 B,7 

* l = longitudinal, t = transverse. 

r/i j are the components  of  the Lagrange deformat ion  
tensor at zero stress, and U is the internal energy per 
unit mass. sijki are the components  of  the second-order  
elasticity s tensor (inverse e tensor). In our measure- 
ments the C i j k i m n  a r e  of the 'mixed'  type, because the 
strain induced by the external stress is o f  static nature 
and the strains involved in the ul trasonic waves are 
dynamic.  The difference between 'mixed'  and adiabatic 
T O E C  is usually smaller than the experimental  error 
(Guinan & Ritchie, 1970). Therefore we neglected this 
difference. 

Crysta ls  of  symmet ry  m3 possess the following three 
SOEC and eight T O E C  (in Voigt nota t ion:  index pair 
ii --, i, index pair i j  --, 9 - i - j  for i :/: j ) :  c~, Cl2, c44; 
ClII~ C112, CI13, C123, £7144, C155, C166, C456" For  the second- 
order constants  values of  high precision are available 
(Hauss/ihl,  1961). For  the evaluat ion of  the 8 T O E C  
we selected 17 different sets of  directions of  acoustic 
wave propaga t ion  unit vector k, acoustic wave dis- 
p lacement  unit vector w, and l ight-beam direction z, as 
listed in Table 1. The crystals  were cut into rectangular  
parallelepipeda with dimensions between 8 and 28 mm 
in accordance  with the requirements of  that  list. The 
sequence of  the cubic axes of  the reference system is 
not arbi t rary in crystals  of  symmet ry  m3. We have 
indexed the unique pentagonal  dodecahedron  which 
develops during natural  growth in fl-alums, and in a 
sphere growth experiment in :t-alums, as {210} 
(Haussfihl,  1961). The orientat ions were addit ionally 
control led by Laue photographs .  In order to obtain 
sharp resonance frequencies we prepared the faces 
plane-parallel  with deviations less than  1 lam. The 
optical t ransparency  was achieved by polishing and 

then at taching glass plates of optical quality by the aid 
of  an immersion fluid (paraffin oil). For  the generation 
of  ultrasonic waves, X-cut and Y-cut quartz t ransducers  
with a basic f requency of  ca  5 MHz were cemented on 
one of  the faces perpendicular  to the prescribed 
propagat ion  direction with paraffin oil (longitudinal 
waves) or synthetic D O W  276 V9 (transverse waves). 

A block diagram of  the experimental  a r rangement  is 
given in Fig. 1. The measurements  were carried out in a 
hydrostat ic  pressure cell working up to ca 1400 bar  and 
on a device for uniaxial stresses up to ca 30 bar. The 
temperature  was carefully kept constant .  In order to 
reduce coupling effects between specimen and trans- 
ducer, the excitation frequencies at about  14 and 27 
MHz were chosen far from the resonance frequencies 
of  the transducer.  

In a first step we chose some resonance frequencies 

DIFFRACTED 

B E A M i n g _ _ _ _ - - - - /  'S L " PRESSURE 

I ] GENERATOR 

Fig. 1. Block diagram of apparatus for measuring stress-induced 
shifts of resonance frequencies. CR: crystal, Q" quartz transducer, 
M- mirror, S: shield, L: lens, P: polarizer, PM: photomultiplier. 
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fm at zero stress (m order of resonance). They are easily 
detected by strong, sharp light diffraction spots on a 
glass screen. In the case of transverse waves a 
polarizer, in extinction position for the primary beam, is 
mounted in front of the screen. By this measure the 
background intensity is almost fully eliminated, and the 
diffraction spots are excellently visible even with very 
weak ultrasonic amplitudes. The frequencies of the 
maxima of intensity are taken as resonance frequencies. 
Their reproducible frequency reading is within one 
p.p.m. Then a photomultiplier was adjusted to replace 
the screen and to detect the intensity maxima with a 
still higher accuracy. In the next step the maximum 
hydrostatic or uniaxial stress was applied in order to 
achieve a stable contact film between transducer and 
specimen. After unloading, the specimens were loaded 
steo by step with increasing stresses, and then stepwise 
unloaded, and the resulting frequency shifts A f  were 
measured. 

In cases No. 11 to 17 of Table 1, where uniaxial 
stress and propagation vector are perpendicular, the 
weakest influence of coupling was observed. A certain 
control of coupling effects is possible with the con- 
ditions B 2 = B6, n 9 = B I 3  , and B~0 = Bt4 (Table 1). 
Only such measurements were accepted for the 
evaluation which yielded a linear relation between 
stress and frequency shift over the whole stress range 
applied. In the case of measurements No. 1 and 5 on 
N H  4 alum, a reproducible curvature of the slope Of lOP 
was observed, indicating possibly the influence of 
higher-order nonlinear effects. 

The relation between the measured quantities Of/&to q 
and the left-hand side of the basic equation is given 
by: c3(p o W2)/Oapq = 2po W2(1/ f ) (Of  /Oavq) (Wallace, 
1970, p. 370). With a complete set of experimental data 
the computation of the TOEC was carried out 
employing a least-squares method for the solution of 
the overdetermined system of linear equations (Table 

1). The weight of each mode was chosen in inverse 
proportion to the statistical error of the quantities Bg 
(Table 2). 

Values for auxiliary parameters (SOEC, density, 
coefficients of linear thermal expansion, etc.) are given 
by Haussiihl (1961; see Table 4). 

The pressure derivatives of SOEC Pc u = c~ In cu/OP 
(P-hydrostatic pressure) were obtained by the relation 

Pc = 0 In plOP + 2c3 In l/OP + 20 In flOP. 

For cubic crystals this simplifies to: 

P c =  1/(c,, + 2c,2 ) + 2(1/f)(c3f/cgP). 

Table 2. Relations between quantities Bg (Table 1) and 
observable stress-induced frequency shift for  symmetry 

group m3 

s. adiabatic SOEC; sr :  isothermal elastic compliances; P: hydro- c U • 
static pressure ( o  U = -P6~ / ,  where 6~/ is the Kronecker delta) or 
uniaxial  pressure  ( %  = -Ptitj, where  t d e n o t e s  the direct ion o f  

uniaxial stress, Itl = 1); g = sr~ + 2s~r2. 

B~ = - ( I /g){1  + 2 ~ [ g  + ( l / f ) (O f /OP)] }  
B 2 = --( l /g)  { 1 + 2cS4[g + ( l / f )  (cgf/cgP)l} 
B 3 = - (3/g){  1 + (2/3)(e s, + 4~4 + 2eS2)[g + (l /f)(Of/cgP)]} 
B, = - (3 /g ){ l  + (2/3)(~,  + c s, - ~2)[g + (1 / f ) (Of /OP)]}  
B s = - (2 /g)  { 1 + (cSz + 2d4 + cS2)[g + ( l / f )  (Of/OP)l l  
B 6 = - ( 1 / g ) / l  + 2cS,[g + (I/f)(Of/OP)]l 
B 7 = - ( 2 / g ) { l  + (cS~- cS2)[g + (1/f)(Of/OP)]} 
Bs = - ( l / s r ~ ) t l  + 2cS~[sr~ + (1/f)(Of/OP)]} 
B9 = -(1/sr2) / l  + 2c~'4[sr2 + (l/f)(Of/OP)]} 
Bt0 = -( l /srz){ 1 + 2cS4[srz + (l/f)(Of/OP)l} 
B,, = -2cSt[l  + (l/srz)(l/ f)(Of/OP)l 
B,2 = -2cS~l I + (1/sr2)(I/f)(0f/0P)l 
B 13 = -2(d,,/s'i9 [sl, + (l/f) (Of/OP)] 
Bl, = -2(dds~9 [S,~l + (l/f) (Of/OP)] 
B,5 = -2(d4/sr~z)[s~, + ( l / f )  (Of/OP)] 
B,6 = -2cS,[1 + (l/srz)(l/f)(Of/OP)] 
Bl7 = --[4cSJ(s r, + Srz)] [(l/2)(srt + st2 + sr44/2) + (1/f)(Of/OP)] 

Table 3. TOEC and pressure derivatives o f  SOEC of  the aluminium alums o f  K, NH 4, Cs and CH3NH 3, with 
limits o f  error in parentheses 

Units: TOEC (10 ~ dyn cm-2); Pcij (I0 -s bar-l); Pc', Pc" pressure derivatives of c' = (Cll + cl2 + 2¢44)/2 , c" = ( e l l  - -  ¢12)/2 respectively. 
All values for ca 22°C. 

KAI(SO4) z • 12HzO NH4AI(SO4) z. 12HzO CsAI(SO4) z. 12HzO CH3NHaAI(SO4) 2.12H20 

c,~ - 2 2 . 2  (3%) - 7 . 5  (12%) - 2 1 . 2  (9%) -23-7  (5%) 
c,~ 2 - 7 . 1  (I I%) - 1 . 1  (24%) -11 .1  (9%) -11 .9  (8%) 
c m --8.6 (8%) --2.0 (41%) --12.6 (8%) --11.5 (6%) 
C12 3 --13.4 (7%) --1.9 (48%) --9.0 (22%) - 1 0 . 4  (12%) 
el44 --2.3 (24%) --2.9 (I 1%) --2.7 (8%) -1 .1  (18%) 
c155 --8.02 (4%) --5.62 (3%) - 5 . 9 0  (3%) - 4 . 3 0  (4%) 
c~66 --7.44 (6%) --4.94 (5%) --5.36 (4%) --2.93 (4%) 
c456 --2.0 (22%) --0.64 (24%) --1.6 (38%) -0 .61  (12%) 

Pc~, 2.73 (4%) 0.4 (90%) 1.87 (5%) 2.01 (3%) 
Pc n 6.98 (4%) 1.7 (60%) 3.93 (6%) 3.50 (3%) 
Pc44 3.19 (5%) 2.07 (3%) 1.39 (2%) 0.394 (6%) 
Pc' 3.94 (2%) 1.14 (4%) 2.36 (3%) 2.13 (4%) 
Pc" -0 .038  (160%) - 0 . 7 8  (2%) -0 .155  (4%) -0 .075  (40%) 
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The relation follows from 

c = pv 2 = p[2l(fm - f , ) / ( m  - n)l 2. 

This equation is used for the evaluat ion of any elastic 
constant  c by resonance  frequencies fm of  thick plane- 
parallel plates in non-piezoelectric crystals (Spangen- 
berg & Haussfihl, 1957). 

Results 

Table 3 presents the values for T O E C  and pressure 
derivatives of  SOEC together  with limits of  error as 
obtained from our least-squares computat ion.  

All T O E C  have negative signs, which is not  a 
c o m m o n  feature of  all other cubic crystals so far 
investigated, e.g. crystals of  NaCl- type  possess positive 

c123, c144, and c456. Further,  the differences (Cl~ 2 -c~13) 
and (C155--U166) , which vanish in symmet ry  group 
4/m3,  exist in accordance  with symmet ry  m3 of  the 
alums. The structural relations between alums and 
CsCl- type crystals (Haussfihl, 1961) suggest a similar 
nonlinear  elastic behaviour  in both crystal groups. For  
CsCl- type crystals, only calculated T O E C  are available 
(Ghate,  1965). They all are negative too, and the 
constants  with mixed indices ci: k are much  larger in 
magni tude than those of  crystals of  NaCl-type.  The 
same holds for the alums. Another  feature is the 
smallness of  e ~  compared  with the values of  other 

Table 4. Relat ions between S O E C  and T O E C  (unit: 10 ~ dyn cm -2) f o r  some selected crystals, at room 
temperature 

Reference 
CIII ell C112 el2 C44 c~l/Cl~ c~2/cl j~ YOEC SOEC 

Cu -127-1 16.61 -81.4 II-99 7-56 -7-65 0.640 a a 
Ag -84.3 12.22 -52.9 9.07 4.54 -6-90 0.628 a a 
Au -172.9 19.29 -92.2 16.38 4.15 -8.96 0.533 a a 
Si -82.5 16.577 -45-1 6-392 7.962 -4.98 0.547 b b 
Ge -71-0 12.853 -38.9 4.826 6.680 -5.52 0.548 b b 
LiF -142 11-355 -26 4.76 6 -35  -12.51 0-183 c d 
NaF -148 9.70 -27 2.43 2.81 -15.26 0.182 e d 
KCI -73 4.078 -2.4 0-69 0.633 -17.90 0-033 c d 
NaCi -86.36 4.936 -4.96 1.29 1.265 -17.50 0.057 g d 
MgO -489.5 28.917 -9-5 8.796 15.461 -16.93 0.019 h i 
CaF 2 --124.6 16.357 -40.0 4-401 3-392 -7-62 0.321 j k 
SrF 2 -82.1 12.461 -30.9 4-463 3.187 -6.59 0-377 l l 
BaF 2 -58.4 9-122 -29-9 4.148 2.551 -6.40 0-512 f k 
KAI(SO4) 2. 12H20 --22.2 2.465 -7.1 1.025 0.868 --9.01 0.320 m m 
NH4AI(SO4) 2. 12H20 -7-5 2.520 -1.1 1.09 0-814 --2.98 0.147 m m 
CsAI(SO4)2.12H20 -21.2 3.115 -11.1 1.539 0-840 --6.81 0.524 m m 
CH3NHaAI(SO4) 2. 12H20 -23.7 2.971 - l  1.9 1.732 0.582 -7.98 0.502 m m 

References: (a) Hiki & Granato (1966). (b) McSkimin & Andreatch (1964). (c) Drabble & Strathen (1967). (d) Haussiihl (1960). 
(e) Bensch (1972). ( f )  Gerlich (1968). (g) Swartz (1967). (h)Bogardus (1965). (i) Chung & Lawrence (1964). Q')Alterovitz & Gerlich 
(1969). (k) Hauss/Jhl (1963). (l) Alterovitz & Gerlich (1970). (m) Present work. 

Table 5. Pressure derivatives o f  S O E C  (unit: 10 -5 bar-~) for  some selected crystals at room temperature 

PCll PCI2 PC44 PCl2/P¢ll PC44/PCll Reference 

CsCl 1.91 5-78 4.57 3.0.3 2.39 a 
CsBr 2-19 6.44 5.06 2-94 2-31 a 
CsI 2.74 7.68 6.11 2.80 2.23 a 
LiF 0.88 0.57 0.22 0.65 0.25 b 
NaF 1.19 0.84 0.073 0.71 0.06 b 
KCI 3.17 2.29 -0.61 0.72 -0-19 c 
NaCl 2.4 1.6 0.29 0.67 0.12 d 
MgO 0.32 0.21 0.074 0-66 0.23 e 
KAI(SO4)2.12H20 2.73 6.98 3.19 2.56 1.17 f 
NH4AI(SO4) 2. 12H20 0-4 1.7 2.07 4.25 5.18 f 
C s A I ( S O 4 )  2 . 12H20 1.87 3-93 1.39 2.10 0" 74 f 
CH3NHaAI(SO4) 2. 12H20 2.01 3" 50 0" 394 1.74 0- 20 f 

References: (a) Chang & Barsch (1967). (b) Miller & Smith (1964). (c) Bartels & Schuele (1965). (d) Swartz 
(1967). (e) Anderson & Andreatch (1966). (f) Present work. 
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crystals. In Table 4 the constants c ~ ,  c~, c~2, and C12 
are listed for different isotypic crystal groups. The 
ratios C~l~/C~ and c ~ 2 / c ~  vary only slightly within 
these isotypic groups. This should be considered as a 
general rule for stable crystals. A similar rule for 
thermoelastic constants T U= din cu/dT (T tem- 
perature) is known (Haussfihl, 1963). The values 
Clll/Cll for tt-KAI(SO4) 2. 12H20 , fl-CsAI(SO4)2.12H20 
and fl-CH3NH3AI(SO4)2.12H20 coincide with the 
corresponding quantities of crystals of Cu-type, 
diamond-type, and CaF2-type. But for crystals of NaCI- 
type these ratios are about twice as large. The ratio 
Cll2/Cll I for all the crystals investigated so far does not 
differ strongly. The only exceptions are crystals of 
NaCl-type and ~t-NH4AI(SO4)E.12H20 with much 
smaller values. This unusual behaviour might be 
considered as a further manifestation of the intermedi- 
ate position of NH 4 alums between normal tt and t-  
alums. Thermal expansion and thermoelastic proper- 
ties ofa-NH 4 alums range between the values of stable 
st and t-alums (Haussfihl, 1961). 

The pressure derivatives Pcij show a much clearer 
difference between tt and/?-alums. Again the NH 4 alum 
possesses much lower values. 

The pressure derivatives of alums agree well with the 
experimental data of caesium halides (Chang & Barsch, 
1967), contrary to those of NaCl-type which exhibit 
completely different behaviour (Table 5). 

We suggest that studies of TOEC may yield further 
valuable information about special contributions to 
anharmonic properties in crystals originating from 
asymmetric ions and molecules. Further investigations 
in this field are in progress. 
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